An Erdös-Ko-Rado theorem for multisets
نویسنده
چکیده
Let k and m be positive integers. A collection of k-multisets from {1, . . . ,m} is intersecting if every pair of multisets from the collection is intersecting. We prove that for m ≥ k +1, the size of the largest such collection is ( m+k−2 k−1 ) and that when m > k + 1, only a collection of all the k-multisets containing a fixed element will attain this bound. The size and structure of the largest intersecting collection of k-multisets for m ≤ k is also given.
منابع مشابه
A generalization of the Erdős-Ko-Rado Theorem
In this note, we investigate some properties of local Kneser graphs defined in [8]. In this regard, as a generalization of the Erdös-Ko-Rado theorem, we characterize the maximum independent sets of local Kneser graphs. Next, we present an upper bound for their chromatic number.
متن کاملErdös-Ko-Rado and Hilton-Milner Type Theorems for Intersecting Chains in Posets
We prove Erdős-Ko-Rado and Hilton-Milner type theorems for t-intersecting k-chains in posets using the kernel method. These results are common generalizations of the original EKR and HM theorems, and our earlier results for intersecting k-chains in the Boolean algebra. For intersecting k-chains in the c-truncated Boolean algebra we also prove an exact EKR theorem (for all n) using the shift met...
متن کاملErdös-Ko-Rado theorems for chordal and bipartite graphs
One of the more recent generalizations of the Erdös-Ko-Rado theorem, formulated by Holroyd, Spencer and Talbot [10], de nes the Erdös-Ko-Rado property for graphs in the following manner: for a graph G, vertex v ∈ G and some integer r ≥ 1, denote the family of independent r-sets of V (G) by J (r)(G) and the subfamily {A ∈ J (r)(G) : v ∈ A} by J (r) v (G), called a star. Then, G is said to be r-E...
متن کاملErdös-Ko-Rado-Type Theorems for Colored Sets
An Erdős-Ko-Rado-type theorem was established by Bollobás and Leader for q-signed sets and by Ku and Leader for partial permutations. In this paper, we establish an LYM-type inequality for partial permutations, and prove Ku and Leader’s conjecture on maximal k-uniform intersecting families of partial permutations. Similar results on general colored sets are presented.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. J. Comb.
دوره 18 شماره
صفحات -
تاریخ انتشار 1988